

Department of Electrical Engineering and Information Technology Institute of Communication Acoustics

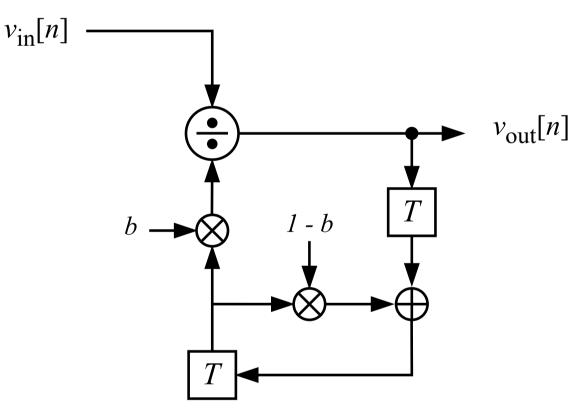
A Lightweight Music Processing Algorithm for Cochlear Implants Based on an Auditory Adaptation Mechanism

Anil Nagathil 1,2 , Benjamin Lentz 1 , Giselle Mojica 1 , Ian C. Bruce 2 , Christiane Völter 3 , and Rainer Martin 1

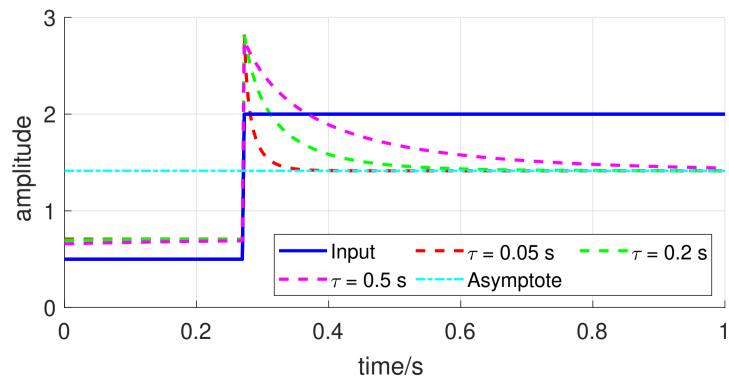

Introduction

- Listening to music is challenging for most cochlear implant (CI) listeners.
- Music processing can reduce polyphony (spectral complexity) and improve music appreciation.
- Most existing music processing algorithms cannot be easily implemented in current CIs (high computational complexity and latency).
- We propose a **computationally efficient music processing algorithm** that is based on a simple auditory adaptation model. The algorithm attenuates slowly varying signal components such as sustained accompaniments and retains important sounds like vocals and drums.

Auditory Adaptation Model (AAM)


Analog model [1, 2] $v_{in}(t) \longrightarrow v_{out}(t)$ R

Equivalent discrete-time model



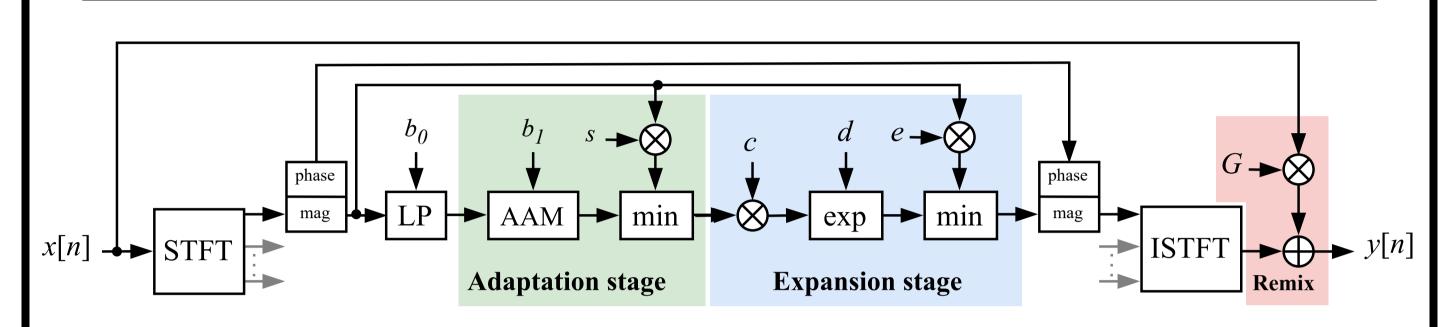
$$v_{\rm C}[n] = v_{\rm out}[n-1] + (1-b) \cdot v_{\rm C}[n-1]$$

with $b=\Delta t/ au$, Δt : sampling period $v_{\mathrm{in}}[n]$

$$v_{\mathrm{out}}[n] = rac{1}{b} \cdot rac{v_{\mathrm{in}}[n]}{v_{\mathrm{C}}[n-1]}$$

Effect of adaptation model

- Enhancement of onsets
- Square-root compression of steady-state components


References

[1] D. Püschel, *Prinzipien der zeitlichen Analyse beim Hören*, Ph.D. thesis, Georg-August-Universität zu Göttingen, 1988.

¹Institute of Communication Acoustics, Ruhr-Universität Bochum, Bochum, Germany

- [2] T. Dau et al., "A quantitative model of the "effective" signal processing in the auditory system. I. Model structure," J. Acoust. Soc. Am., vol. 99, no. 6, pp. 3615–3622, June 1996.
- [3] F. Chen et al., "Predicting the intelligibility of reverberant speech for cochlear implant listeners with a non-intrusive intelligibility measure," *Biomedical Signal Processing and Control*, vol. 8, no. 3, pp. 311–314, May 2013.
- [4] N. Ono et al., "Separation of a monaural audio signal into harmonic/percussive components by complementary diffusion on spectrogram," in *Proc. EUSIPCO*, Aug. 2008. [5] W. Buyens et al., "A harmonic/percussive sound separation based music pre-processing scheme for cochlear implant users," in *Proc. EUSIPCO*, Sept. 2013.

Proposed Music Processing Algorithm

- LP: low-pass filter for temporal smoothing of magnitude spectrum.
- AAM enhances onsets, min operators + parameters s, e limit overshoots.
- Expansion stage controls output dynamics (d: exponent).
- Remix stage adds attenuated input signal to processed signal (G: gain).

Experimental Setup

Signal processing parameters:

- Sampling frequency: $f_s = \frac{1}{\Delta t} = 22.05 \text{ kHz}$
- DFT length: N=512, Hann window, 75% overlap

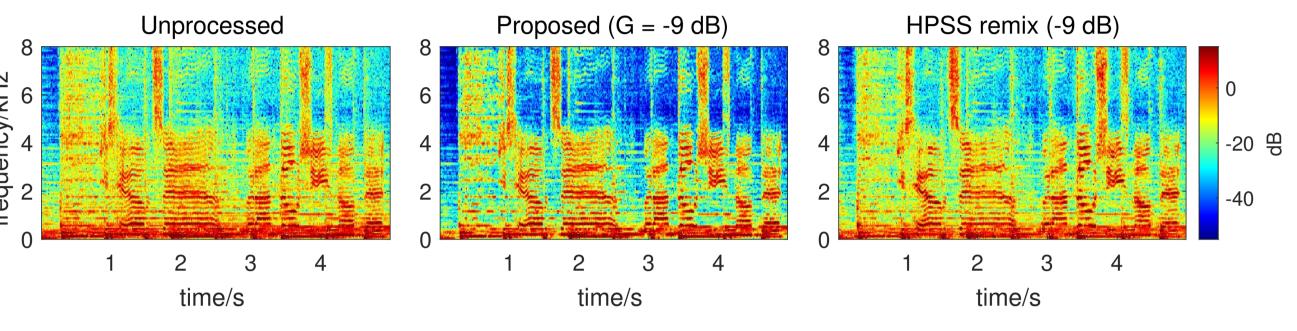
Parameter optimization:

- Parameter ranges: $\tau_i/\text{sec.} \in [0.005, 0.2]$, $s \in [0.9, 3]$, $d \in [1, 4]$, $e \in [0.5, 3]$
- Optimization criterion: ModA measure [3] (quantifies the modulation strength by calculating the area under the modulation spectrum)

Data set:

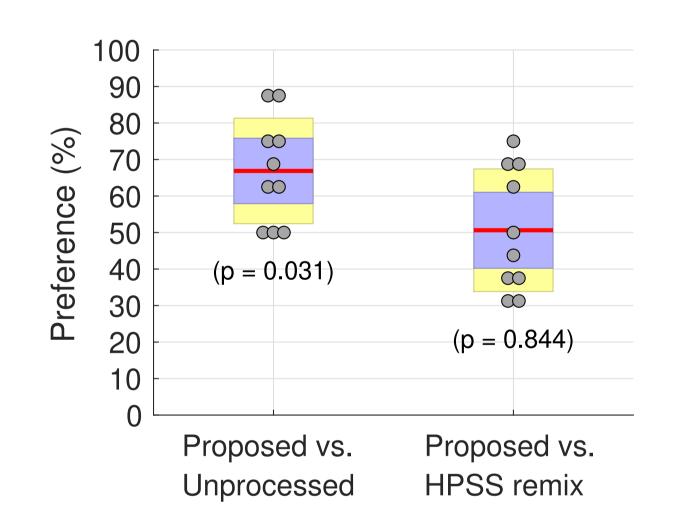
• DSD100 multi-track data set (vocals, bass, drums, accompaniment)

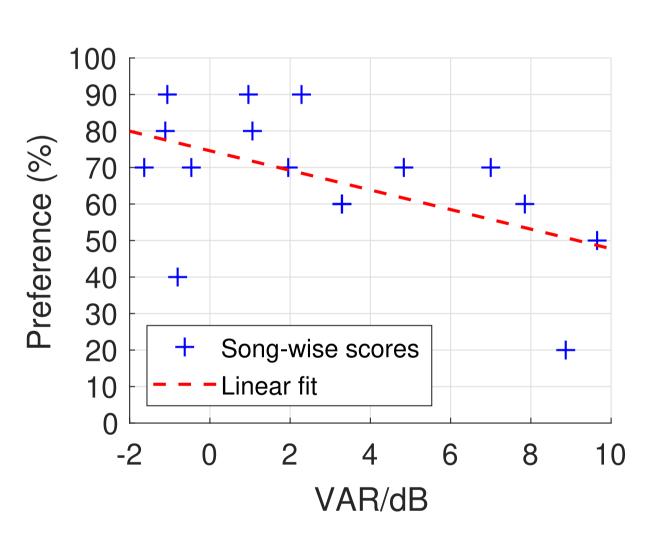
Baseline algorithm:


- Iterative Harmonic-Percussive Sound Separation (HPSS) [4] & remix [5]
- Estimates sustained ("harmonic") & transient ("percussive") sound components and attenuates sustained components.
- $f_s = 22.05$ kHz, DFT length: N = 4096, Hann window, 75% overlap

Listening experiment:

- 10 postlingually deafened CI listeners (5 female, 5 male)
- Mean age: 65.1 ± 14.53 years (range: 40 to 86 years)
- 16 music excerpts (not used during optimization)
- 2AFC tests: Proposed algorithm (G = -9 dB)
- -vs. unprocessed input signal
- -vs. HPSS remix (harmonic attenuated by -9 dB w.r.t. percussive)
- Signed-rank significance tests with Bonferroni-Holm correction.


Results


Example spectrograms:

• Proposed algorithm increases spectro-temporal contrast and yields distinct vocals and drums.

Listening experiment:

- Significant preference over unprocessed music.
- Most effective at lower vocal-to-accompaniment ratios (VAR).
- No significant difference in preference compared to HPSS remix.

Computational complexity and latency:

(Signal length: 10 s; PC: Intel Core Ultra 7 165U, 64 GB RAM)

	Proposed	HPSS remix
Processing time	$0.234~{ m s}\pm 0.009~{ m s}$	$0.582~{ m s}\pm0.024~{ m s}$
Latency (N/f_s)	23.2 ms	185.8 ms

Conclusions

Proposed music processing algorithm

- improves music appreciation and is on par with HPSS remix,
- has lower computational complexity and latency than HPSS,
- could be implemented as a real-time application in a CI.

Acknowledgments: This work has received funding from the European Union's Framework Programme for Research and Innovation Horizon Europe (2021-2027) under the Marie Sklodowska-Curie grant agreement no. 101151006 (AN), and the German Research Foundation (DFG), research grant 544277892 (BL, GM).