Predicting Pair Synchrony from Individual Measures of Rhythmic Entrainment Performance

Diya Chutani, Kiah Prince, & Steven Brown

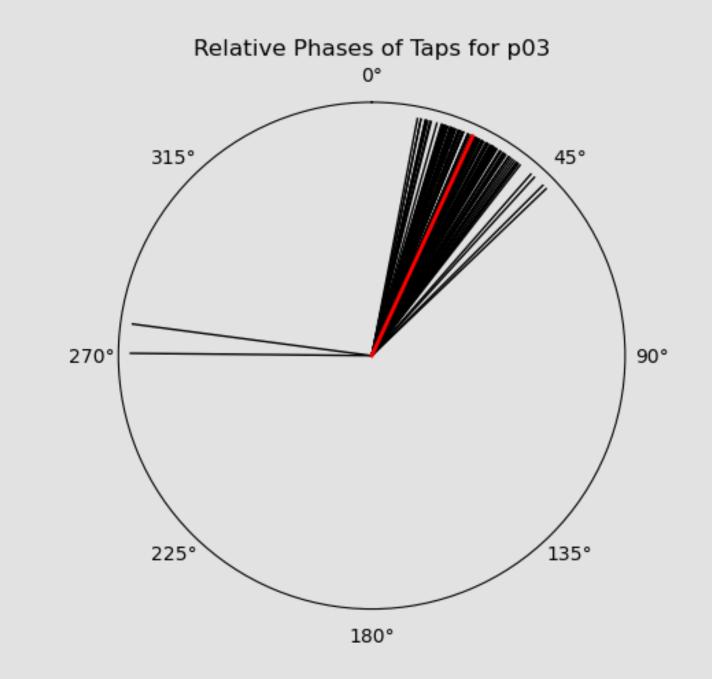
Department of Psychology, Neuroscience, and Behaviour, McMaster University

INTRODUCTION

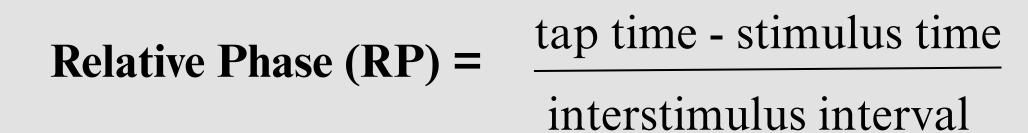
- Synchrony is a key component of our interpersonal lives and is linked to increased social connection and positive affect (Basso et al., 2021).
- Pair dancing offers a lens to study synchrony in coordinated behaviors.
- Individual traits that influence how synchronous a group is able to be are not yet well understood. Do groups benefit from being composed of exclusively skilled individuals? Or does variation in skill level contribute to better synchrony?

METHODS

Finger Tapping


- Participants engaged in three different finger tapping tasks: external metronome entrainment at 100 bpm, at 150bpm, and a no metronome (spontaneous motor tempo) task.
 - three 30 second trials with 10 seconds of
 rest
 - first trial treated as training, second and third used for analysis

Dance Step Task


- Participants engaged in a simple side step dance task with various conditions relating to the presence of absense of certain cues :
 - external all cues metronome present
 - mutual all cues no metronome, audio
 cues from tambourines on the ankles of
 both participants
 - o no audio no metronome or tambourines
- Accelerometers on the ankles of the
 participants were used to measure motion.
 Pearson cross-correlations of the foot
 movements were used as a measure of
 synchrony.

FINGER TAPPING ANALYSIS

Tap times from the finger tapping data were represented using circular statistics (Fisher, 1995) based on common approaches in previous work (Whitton et Jiang, 2024; Iversen et al., 2015).

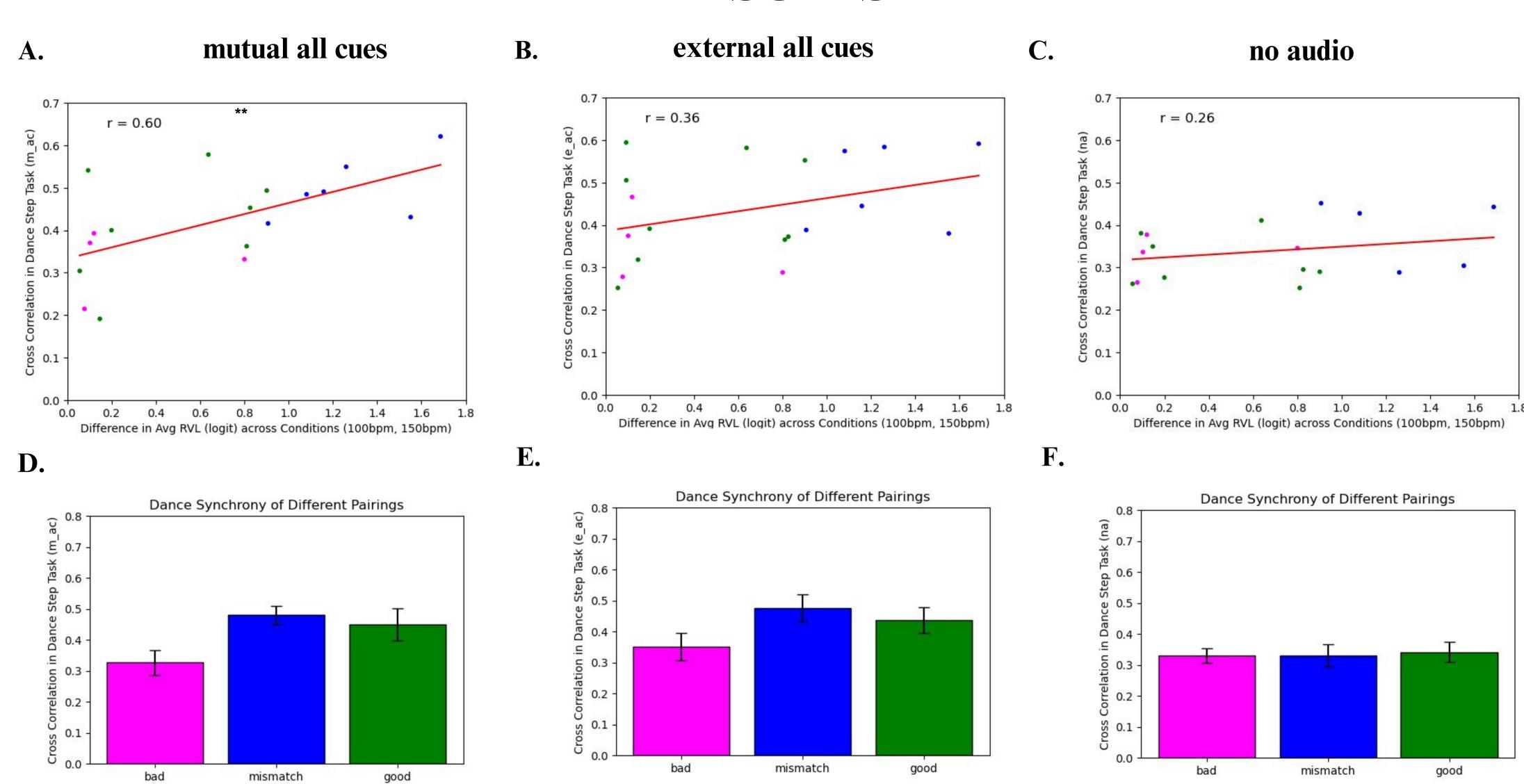
Mismatched Pairs: RVL difference score in top third relative to other pairs

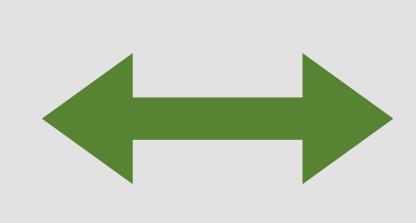
Resultant Vector Length (RVL) - A measure of how concentrated the RPs are around a central tendency; a logit transform was performed on this parameter to better see the range in values. A higher logit RVL means the RPs are more concentrated, and tapping performance was thus more consistent.

Good Pairs: not mismatched, pair average RVL greater than overall median

Bad Pairs: not mismatched, pair average RVL less than overall median

RESULTS




Figure 1. Greater difference scores correlated with better synchrony performance in mutual all cues condition.

(A-C) Linear Regressions examining the correlation between difference in logit RVL across pairs (averaged across bpm conditions) and dance synchrony (cross correlation of vertical foot movement) across three conditions. (D-F) average dance synchrony of pair categories. ** p-value < 0.01

Significant positive correlation between dance synchrony and the difference in consistency performance across a pair

DISCUSSION

Greater differences in consistency performance across partners

Increased pair synchrony

• WHY?

- Many pair dances exhibit a leader-follower structure.
- Differences in skill level may allow for clearer distinction of roles, assisting in synchrony.

- These findings are in line with the general result that diversity in groups benefits their collective competence when performing tasks (Wooley et al., 2015).
- Why is the effect not present in external-all cues and no audio?
 - Synchrony performance in no audio was significantly lower than the other dance step conditions and external all cues may be less reliant on social cues due to the metronome.
- Looking ahead: Assessing if leader-follower dynamics emerge in dance step task when dyads/groups have mixed skill levels.

REFERENCES

Basso, J. C., Satyal, M. K., & Rugh, R.. (2021). Dance on the Brain: Enhancing Intra- and Inter-Brain Synchrony. Frontiers in Human Neuroscience, 14. https://doi.org/10.3389/fnhum.2020.584312

Fisher, N. I. (1995). Statistical analysis of circular data. cambridge university press.

Iversen, J. R., Patel, A. D., Nicodemus, B., & Emmorey, K. (2015).
Synchronization to auditory and visual rhythms in hearing and deaf individuals. Cognition, 134, 232–244.
https://doi.org/10.1016/j.cognition.2014.10.018

Whitton, S. A., Sreenan, B., & Jiang, F. (2024). The contribution of auditory imagery and visual rhythm perception to sensorimotor synchronization with external and imagined rhythm. Journal of experimental psychology. General, 153(7), 1861–1872. https://doi.org/10.1037/xge0001601

Woolley, A. W., Aggarwal, I., & Malone, T. W. (2015). Collective Intelligence and Group Performance. *Current Directions in Psychological Science*, *24*(6), 420-424. https://doi.org/10.1177/0963721415599543 (Original work published 2015)