The influence of theta and beta synchronization on reward and motor learning in music ¹Albury A.W., ²Deosdad Díez M., ²Fàbrega-Camps G., ³Ara A., ²Marco-Pallares J., & ¹Penhune V.B. ¹Concordia University, Montreal; ²Universitat de Barcelona, Spain; ³McGill University, Montreal ## **BACKGROUND** - Music cognition recruits a broad range of brain areas¹ - Synchronization of neural oscillations is a potential mechanism of communication between distant brain areas² - Right frontotemporal synchronization in theta has been positively associated with pleasure during music listening³ - Musical pleasure has been shown to influence motor learning of short melodies⁴ - Beta band activity has been associated with motor learning⁵ - How do beta and theta synchronization in frontotemporal and motor areas influence performance and pleasure for short piano melodies? #### **METHODS** ### **Participants** 30 right-handed non-musicians #### Stimuli - 9 probabilistically generated melodies - 4 bars of context; 2 bars played - 5-note patterns ### **Analysis** - Inter-site Phase Coherence (ISPC) - Reward: **Theta** - Motor: Beta - Liking ratings (1-7) x theta ISPC - Accuracy and beta ISPC change over time #### RESULTS Effects of Beta Synchronization on Piano Learning (Accuracy Slope Across Trials) REFRENCES: