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* Music Information Retrieval (MIR) is frequently used in academia and e
industry to analyze and cIaSS|fy digital music files | Extraction Tool
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*Despite widespread use, little testing of MIR tools has been conducted
" Evaluation is difficult: lack of ground truth and labelled data -
How can we evaluate the accuracy of subjective features? .. 0
*In classical music, structural features like mode are unchanged while 5 160 500 200 24 _g§
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N 1 IR lb 8 Low Standard Fig. 2: Continuous distributions of raw feature values. Each plot includes Fig. 3: Standard deviations of standardized feature values for each extraction tool. Each boxplot includes 24 data points,
tO 0 0 x I o o I Deviati all 384 (24 preludes x 16 versions) audio files. Features are shown in one for each prelude, calculated using the 16 versions. Higher values indicated a greater degree of variability while lower
eviation original units. values indicate greater consistency between versions.
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Gi# Minor summary

* We propose a method for evaluating MIR features that does not rely on ground truth

| * Mode extraction is more variable than number of onsets
T ‘ Number of - = 5 0  Apart from the number of onsets, MIRtoolbox is more variable than other tools
Tempo HMbEr o Extracted Mode Value * These analyses can help inform decisions when selecting a tool or algorithm
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Fig. 2: Prelude with lowest (E Major) and highest (G# Major) extracted mode standard deviation.
Each dot represents a version. Positive mode values indicate major mode, negative minor.
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