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* Undirectioned interconnected networks, inspired by the neurons’ connectivity in brains —
* Processing temporal data by maintaining memory through recurrent connections ' '

* Sensorimotor synchronization, the coordination of
rhythmic auditory input and motor responses, is an
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inherent skill in humans.
* Experiments have shown animals can learn to
synchronize with metronomes through reinforcement.
* In this study, we investigate the neural processes
underpinning rhythm perception and beat prediction
while exploring methods to train artificial agents to
entrain to rhythms.

« CTRNNSs, mimicking biological processes, computes continuously '

* Input: A series of equally spaced beats ranging from 0.4 seconds to 1.2 seconds. - =L - -
* Output: A sine wave with the same period following each beat
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» Generating targets for each neuron using a second randomly connected network
» Useful for tasks with silent inputs over thousands of model integration time steps 0.6 -
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° o v * Successfully trained monkeys to tap synchronously with visual or auditory beats "
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Fig10. RL's Output
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Figb. Schema of Our RL Model:
Agent can push a spring or move a slider to tap

Future Directions
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Fig7. RLs Task Description » Teaching the RL agent to tap along rhythmic input
* Comparing and integrating computational findings with existing

* Input: A fixed context cue over time . .
* Output: Agent Tap synchronously with a tempo proportional to the context cue. behavioural and experimental data

» Comparing different training regimes




