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Figure 1: Average mode rating of perceptual experiment and MIRtoolbox predictions of mode in Figure 2: Average mode rating of perceptual experiment and LibROSA predictions of
each piece. No correlation between listener’s averaged perceived mode and MIRtoolbox’s predicted mode in each piece. Significant moderate correlations in 3 out of 4 performers between
mode, further revealing inconsistencies in MIRtoolbox’s ability to predict perceptual information. perceived mode and LibROSA’s predicted mode.
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5 R e ST T e e We compared algorithmic predictions of modality from two MIR systems (MIRtoolbox and LibROSA) to the composer-declared nominal mode and an

experiment of listener’s perceived mode.
. . * Results reveal no predictive consistency for MIRtoolbox’s predictions of perceptual mode, whereas LibROSA’s predictions of mode moderately correlated
Mln()r MO de MaJ Or with perceptual mode for three of the four performance interpretations.
0 O | O 0 * Both systems provide a general predictive alignment with the nominal mode, with MIRtoolbox having a clearer, more distinct alignment.
* Results of this study highlight the differences between algorithms and may reveal specific use cases for each.
* Future work 1n examining piecewise differences may reveal interesting trends with inconsistent algorithmic predictions.
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