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INTRODUCTION
• Rhythmic auditory cues (RAC) can improve gait1. Gait benefits may be modulated by the
  coupling of brain activity to RAC2, which has never been quantified during gait.
• During finger tapping, coupling is often quantified as EEG power at RAC frequency3.
  However, coupling cannot be inferred from power only. 
• Traditionally, the EEG signal of the electrode that shows maximal response to RAC is analyzed,
  introducing bias and minimizing signal-to-noise ratio. Generalized eigendecomposition  (GED)
  solves these methodological concerns as it computes one time-series from all electrodes.
• GED was recently used to extract one brain component oscillating at RAC frequency during finger
  tapping4. Coupling was quantified as the stability index (i.e., the standard deviation of
  instantaneous frequencies), which captures the dynamic phase adjustments of oscillations.
• β-power modulation mediates the predictions needed to synchronize our footsteps to RAC 5.

OBJECTIVES

1. Extract one neural component 
coupled to RAC during gait using 
GED.

2. Quantify coupling as power, 
phase consistency, stability index, 
and β-power modulation to find 
which of these variables better 
describes coupling of brain 
activity to RAC during gait.

METHODS

Participants
Open-access 
data of 20 young 
healthy adults 
were analyzed6.

Fig. 1. Experimental protocol from Wagner et al. (2019). Only conditions 
Uncued Pref and Cued Pref were analyzed.

Instrumentation
EEG: 108 electrodes (EasyCap, Herrsching, Germany).
RAC: alternating high and low tones.
Foot switches:  placed under the heels to detect foot strikes.
Statistics
Linear mixed-effects models  assessed whether power, phase 
consistency, stability index, and β-power modulation  differed in cued 
and uncued conditions as follows: 
Outcome measure ~ 1 + Conditions + (1 | Participants)

Fig. 2. EEG processing. GED creates spatial filters to extract two neural components: SSEP (coupled to the step 
frequency) and β (around 20 Hz). Power, phase consistency, and the stability index were computed from the SSEP 

time-series. β-power modulation was computed from the β component.

RESULTS

Fig. 3. Group means with 95% CI bars plotted against each participant’s mean and 95% CI bar for A. SSEP power, B. phase consistency, C. stability index, and D. β-
power modulation during cued (orange) and uncued (blue) conditions. Note. Significant main effects of Conditions are shown with a black asterisk.

Power: no effect (Estimate = -.001; 
SE = .012; t = -.082; P = .934).
Phase consistency: coupling more 
stable without cues 
(Estimate = .156; SE = .033; 
t = 4.68; P < .001). 
Stability index: no effect 
(Estimate = -.0008; SE = .0007; 
t = -1.18; P = .240). 
β-power modulation: Better 
predictions with cues (Estimate 
= .113; SE = .016; t = 6.91; P < .001).

CONCLUSION
• SSEP and β components could be extracted with GED during gait, lowering electrode-selection bias and increasing signal-to-noise ratio.
• Outcome measures computed from the SSEP component seem to reflect neural coupling to motor behaviour, instead of RAC.
   In fact, high power at the movement frequency is expected during uncued repetitive motor tasks 7. 
• β-power modulation might better describe neural coupling to RAC as it happens at a frequency that differs from movement itself.
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