

# Walking to the beat: How to quantify neural entrainment



Québec 🎂 🚳



C. Ziane<sup>a,b</sup>, S. Dalla Bella<sup>b,c,d</sup>, F. Dal Maso<sup>a</sup> <sup>a</sup> School of kinesiology and Exercise Sciences, University of Montreal, Canada <sup>b</sup> International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada <sup>c</sup> Department of Psychology, University of Montreal, Canada <sup>d</sup> Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada

## INTRODUCTION

# **OBJECTIVES**

- Rhythmic auditory cues (RAC) can improve gait<sup>1</sup>. Gait benefits may be modulated by the **coupling** of brain activity to RAC<sup>2</sup>, which has never been quantified during gait.
- During finger tapping, coupling is often quantified as **EEG power** at RAC frequency<sup>3</sup>. However, coupling cannot be inferred from power only.
- Traditionally, the EEG signal of the electrode that shows maximal response to RAC is analyzed, introducing bias and minimizing signal-to-noise ratio. Generalized eigendecomposition (GED)

**1. Extract one neural component** coupled to RAC during gait using GED.

## **2.** Quantify coupling as power,

solves these methodological concerns as it computes one time-series from all electrodes. • GED was recently used to extract one brain component oscillating at RAC frequency during finger tapping<sup>4</sup>. Coupling was quantified as the **stability index** (*i.e.*, the standard deviation of instantaneous frequencies), which captures the dynamic phase adjustments of oscillations. • β-power modulation mediates the predictions needed to synchronize our footsteps to RAC<sup>5</sup>.

phase consistency, stability index, and β-power modulation to find which of these variables better describes coupling of brain activity to RAC during gait.



#### Instrumentation

**EEG:** 108 electrodes (EasyCap, Herrsching, Germany). **RAC:** alternating high and low tones. Foot switches: placed under the heels to detect foot strikes.

### **Statistics**

Linear mixed-effects models assessed whether power, phase consistency, stability index, and  $\beta$ -power modulation differed in cued and uncued conditions as follows:

*Outcome measure ~ 1 + Conditions + (1 | Participants)* 



Fig. 2. EEG processing. GED creates spatial filters to extract two neural components: SSEP (coupled to the step frequency) and  $\beta$  (around 20 Hz). Power, phase consistency, and the stability index were computed from the SSEP time-series.  $\beta$ -power modulation was computed from the  $\beta$  component.



Fig. 3. Group means with 95% CI bars plotted against each participant's mean and 95% CI bar for A. SSEP power, B. phase consistency, C. stability index, and D. β-power modulation during cued (orange) and uncued (blue) conditions. *Note.* Significant main effects of *Conditions* are shown with a black asterisk.

(Estimate = -.0008; SE = .0007;)t = -1.18; P = .240).**β-power modulation:** Better predictions with cues (Estimate = .113; SE = .016; t = 6.91; P < .001).

## CONCLUSION

• SSEP and β components could be extracted with GED during gait, lowering electrode-selection bias and increasing signal-to-noise ratio.

- Outcome measures computed from the SSEP component seem to reflect neural coupling to motor behaviour, instead of RAC.
- In fact, high power at the movement frequency is expected during uncued repetitive motor tasks <sup>7</sup>.
- β-power modulation might better describe neural coupling to RAC as it happens at a frequency that differs from movement itself.

#### References

1. Ghai, S., et al. (2018). Aging Dis, 9(5): 901-923. 2. Damm, L., et al. (2020). Neuroscience & Biobehavioral Reviews 112: 553-584. 3. Nozaradan, S., et al. (2015). Cerebral Cortex, 25(3): 736-747. 4. Rosso, M., et al. (2021). Frontiers in Human Neuroscience, 15: 668918. 5. Rosso, M., et al. (2022). NeuroImage, 257: 119326. 6. Wagner, J., et al. (2019). Scientific data, 6(1): 211. 7. De Pretto, M., et al. (2018). Human Movement Science, 61: 151-166.