

The ramp paradigm: A new protocol for uncovering individual differences in walking to an auditory beat

Agnès Zagala 1,2,3 , Nicholas E.V. Foster 1,3 , Floris Van Vugt 1,2,3 , Simone Dalla Bella 1,2,3

1 International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Canada

² Department of Psychology, University of Montreal, Montreal, Canada

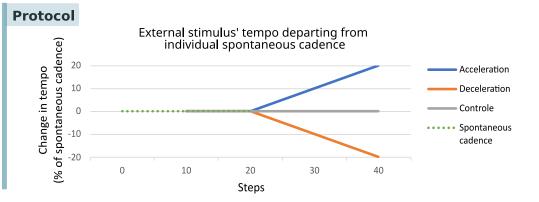
³ Centre for Research on Brain, Language and Music (CRBLM), Montreal, Canada

Introduction

Gait is an excellent model in auditory-motor synchronization because it is:

- Natural and automatic
- Influenced by the characteristics of an external auditory stimulus (e.g. tempo, regularity)²
- Reflects individuals differences in the responsiveness to the stimulus' tempo ³

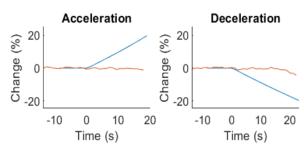
Problem. There is no suitable method which is highly sensitive to individual differences in adapting to rhythmic stimulation while walking.

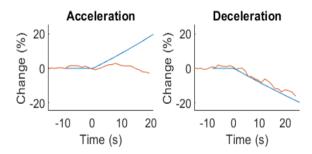

Objective. Devise a method of gait measurement that:

- Is highly sensitive to individual differences in responding to an auditory stimulus
- · Allows to define a stability window in the vicinity of spontaneous gait cadence

Method

In order to highlight individual differences, we propose a new method called TeensyStep, based on TeensyTap⁴




Type of response to the auditory stimulation

When participants are asked to walk naturaly with the stimulus, we observe different responses :

Exemple of a non-responder

Exemple of a responder

Conclusion

- The Ramp paradigm is currently used as a way to test the effect of explicit and implicit response to the participants to the stimulus change) by manipulating the kind of instructions
- It allows us to observe distinct response profiles

References. 1: Dalla Bella et al., (2017) Scientific Reports, 7. https://doi.org/10.1038/srep42005; 2: Leow, L.-A., Parrott et al., (2014) Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00811; 3: Crosby et al., (2020) Frontiers in Neurology, 11. https://doi.org/10.3389/fneur.2020.517028; 4: Van Vuqt, (2020). Advances in Cognitive Psychology, 16, 302–308. https://doi.org/10.5709/acp-0304-y;