

SCIENCE Department of Psychology, Neuroscience & Behaviour

BACKGROUND

Speech and song have both shared and distinct features – structurally, functionally and cognitively Both are ancient, innate, and universal Their related forms and functions might be due to a shared evolutionary history

MUSILANGUAGE PRECURSOR

speech: lexicality

shared ancestor: rough levels and contours, vocal production learning

song: precise & recurrent pitches & intervals

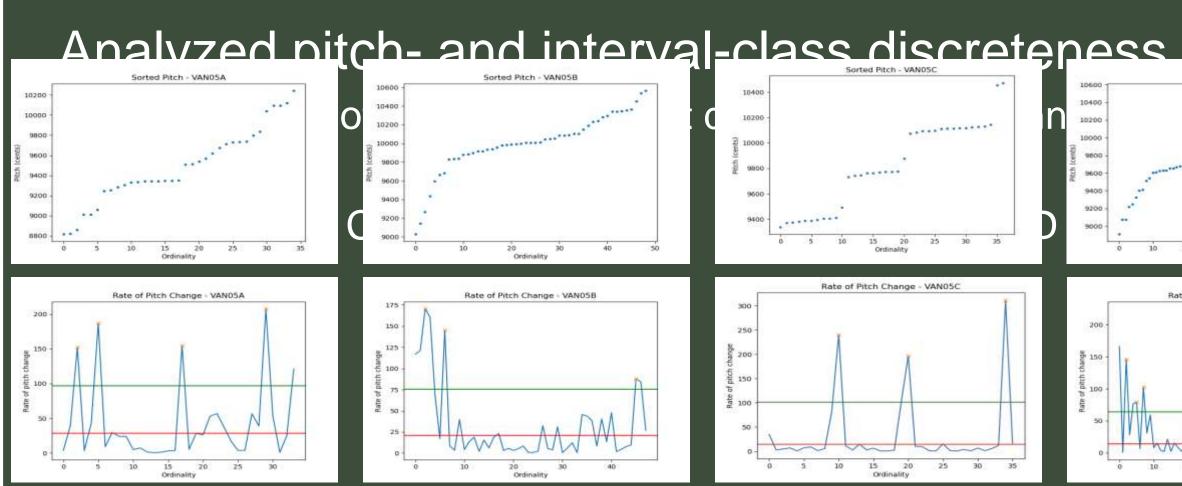
FUNCTIONAL DIVERGENCE?

• Parent-infant and social-emotional bonding?

- Social cohesion and synchronization?
- Cultural transmission and memory?

STRUCTURAL DIVERGENCE?

- Lexicality logogenic (all words) \rightarrow melogenic (all melody)
- Pitch- & interval-class discreteness \rightarrow emergence of intervals, scale steps, meter
- Recurrence unique utterances \rightarrow repetitive form
- Texture dialogic \rightarrow solo \rightarrow choric
- Expansion \rightarrow increasing pitch/interval range, vowel duration


Discreteness and the musilanguage continuum

Elizabeth Phillips, Sam Kim, Steven Brown Department of Psychology, Neuroscience & Behaviour, McMaster University

METHODS Corpus of cross-cultural recordings: Hilton et al. 2022 B. Infant-directed D. Adult-directed Segmented into notes (song samples) and syllables 20 30 40 50 60 Ordinality 0 10 20 30 40 50 60 7 Screened data for correlated predictors, collinearity (\/IF) & outliers (Cook's distance) Discreteness model: Spectral model: Rhythm/tonaity model: pitch salience (mean) pitch salience (stdev)

Used 4 samples from 19 regions (76 tracks total): A. Infant-directed song speech C. Adult-directed song speech

(speech samples) using Tony

Conducted basic MIR using Essentia to extract important spectral, rhythmic, and tonal features

Full model: pitchclass-r2 pitchclass-stepiness pitchclass-flatness pitchclass-inertia pitchclass-silhouette intervalclass-r2 intervalclass-stepiness intervalclass-flatness intervalclass-inertia intervalclass-silhouette pitch salience (mean) pitch salience (stdev) spectral complexity (mean) spectral energy (mean) spectral energy (stdev) spectral flux (mean) spectral rolloff (mean) beats count bpm diatonic strength ET deviation

pitchclass-r2 pitchclass-stepiness pitchclass-flatness pitchclass-inertia pitchclass-silhouette intervalclass-r2 intervalclass-stepiness intervalclass-flatness intervalclass-inertia intervalclass-silhouette

> spectral complexity (mean) spectral energy (mean) spectral energy (stdev) spectral flux (mean) spectral rolloff (mean)

beats count bpm diatonic strength ET deviation

RESULTS					
	Null model	Full model	Discreteness model	Spectral model	Rhythm/tuning model
Residual Deviance	187.95	40.1	99.31	122.01	164.83
Likelihood-ratio Chi-square	0, df=0, p=1	147.85, df=- 63, p<0.001	88.64, df=-30, p<0.001	65.94, df=- 21, p<0.001	23.12, df=-12, p<0.005

Pitch- and interval-class discreteness are significant predictors of vocalization type cross-culturally Our discreteness models performed equal to or better than our MIR models at predicting vocalization type

- classification analyses
- regression?

- continuum (e.g. chant, poetry)

DISCUSSION

 Discreteness calculations still under development • Small sample size, especially for split-set • Interaction and higher-order terms? • Perhaps different results if the vocalization type was dichotomized (speech vs song) for binomial

FURTHER WORK

 Isolate features of proposed structural axes using synthesized samples, then collect ratings along a continuum from speech to song • Explore classification and rating with more naturalistic intermediates along the musilanguage Investigate relationships between manipulations of the structural axes, musilanguage ratings, and behavioural effects (e.g. memory, synchrony)