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Visualizations generated using MRIcron software (http://www.nitrc.org/projects/mricron), based on first and second order connectivity analyses at the group level.
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Introduction
Auditory-motor synchronization is a validated method used to address gait [1], upper limb
[2], and motor speech [3] rehabilitation in Parkinson’s disease and other populations with a 
motor neurological disorder [4]. 

Predictable auditory cues optimize movement patterns while reducing the brain’s reliance on 
dopaminergic (DA) responses in the ventral striatum, albeit exact mechanisms for the 
reduction in DA uptake require further investigation [5].
AIM
This study investigates auditory-motor synchronization using network science methods.
HYPOTHESIS
Global efficiency (GE) and clustering coefficient (CC) will be higher during the finger-
tapping auditory-motor to 1Hz tone task, in comparison to the self-paced tapping task.

Methods
PARTICIPANTS (n = 14)
Fourteen non-musician healthy adults
• Age: 22-35 years old (M = 30.4 ± 5)
• Education: Bachelor (4), Masters (7), PhD (3)
• Right-handed

• Sex: 7 females, 7 males
• Race: Caucasian (8), AA (4), 

Asian (1), Caribbean (1)
PROTOCOL
• Structural T1
fMRI tasks 6-MIN BLOCK DESIGN
• Self-paced tapping at a referenced 1Hz tempo
• Finger-tapping to a steady 1Hz auditory beat

MATERIAL
3-T MRI Siemens Magnetom Skyra
syngo MR D13
fMRI time series used gradient echo EPI 
images (TR/TE=2000/25 ms)

ROIS – Subnetworks [6, 7]
[1] Auditory (AUD)
[2] Basal ganglia network (BGN)
[3] Central executive network (CEN)
[4] Dorsal attention network (DAN)
[5] Default mode network (DMN)
[6] Sensorimotor (MOT)
[7] Orbitofrontal cortex (OFC)
[8] Saliency (SAL)
[9] Visual (VIS)

BEHAVIORAL DATA 
E-prime 3.0 (Psychology tools) delivered 
auditory stimuli and visual instructions, 
and a SRBOX captured finger tapping 
times.

PRE-PROCESSING
fMRI data were realigned, slice-time corrected and co-registered to the structural images. 
Structural images were warped and normalized to MNI template space using SPM8.
NETWORK GENERATION
Pearson’s correlation was applied to the time series voxel correlation pairs to produce a cross-
correlation matrix, on which a threshold S = log(N)/log(K) was applied to each participants. 
This dichotomized the data into equivalent node density binary adjacency matrix (Aij) [8]. 
S = 2.5 was used based on previous work about network fragmentation [9].
N = number of network nodes; K = average node degree/links
NETWORK ANALYSIS
The spatial consistency of nine brain subnetworks as community structures were investigated 
at the group level using a two-sample Jaccard index permutation test based on the scaled 
inclusivity (SI) statistics [10].
A mixed-effect multivariate regression model was used to test the hypotheses that changes in 
global efficiency (GE) and clustering coefficient (CC) were associated with the experimental 
tasks in the studied subnetworks [11, 12]. 
First order (direct) and second order (indirect) connectivity analyses were performed to 
understand the connections from the BGN with other subnetworks [13].

Conclusion
Efficiency is a measure of information flow in the brain. The increased BGN global efficiency 
in the presence of predictable auditory cues during a finger-tapping task may indicate the 
influence of auditory cueing on higher neural synchronization within and via the basal ganglia 
subnetwork.
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Network Generation Multivariate Regression Model
Basal Ganglia Network Topology in its Whole-Brain Context[9]

1st & 2nd Order Connectivity Analysis from the BGN

Visualizations generated using the MATLAB toolbox WFU_MMNET (Multivariate Modeling of Brain Networks) by Baharami et al. (2018).

Probability Modeling

Mixed-Effects Multivariate Regression Model within the BGN
Finger-tapping to 1Hz tone in comparison to self-paced tapping

Model Parameters Network Parameter Estimate p-value

Strength of 
connection

Global efficiency 0.0236 .0064
Clustering coefficient −0.01663 0.0487

Connection 
probability

Global efficiency 0.1801 .0112
Clustering coefficient −0.3513 <.0001

Confounding variables (5): age, sex, years of education, right-handedness score, race

BGN AUD CEN DAN DMN OFC SMN SN VIS

1st order 
(direct)

Self-paced 10.41% 15.67% 8.68% 19.03% 4.88% 12.66% 13.79% 7.44% 7.44%

1Hz tone 21.64% 4.38% 9.67% 8.74% 15.99% 5.18% 12.57% 11.43% 10.40%

2nd order 
(indirect)

Self-paced 13.69% 2.30% 10.01% 27.14% 2.51% 11.84% 13.48% 9.51% 9.51%

1Hz tone 2.89% 5.72% 12.38% 11.35% 19.81% 2.39% 18.19% 12.61% 14.67%

Visualizations generated using MRIcron software (http://www.nitrc.org/projects/mricron), based on scaled inclusivity (SI), a statistic that computes the spatial consistency of 
community structure across the group of participants for each condition. The scale represents the average overlaps of the highest degree/most connected BGN nodes. 
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+ Threshold (S) = Binarized networks of 
similar node densities

= Network statistics applied 
to each node+ Pearson’s correlation
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p < .0001
β = −.3513Percentages represent the distribution of connections for the BGN with other subnetworks.
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