

Background

Interpersonal physiological coordination is the coordination of physiological signals between individuals over time that occurs during an interaction. It is thought to represent coregulation of attention and arousal^{1,2} and is associated with prosocial behaviour³.

Persons with Dementia (PWD) often experience impacts on the quality of their significant relationships (e.g., with friends, family, partners, or caregivers)⁴. Programs that encourage connecting with others may thus help improve relationships for PWD.

We predicted that moments of connection between PWD and caregivers during a movement program would be associated with interpersonal physiological coordination, which might also depend on physiological mode.

Previously collected data:

n = 5 caregivers

Methods

Group movement program with solo and duo activities

Video coding for moments of reciprocal connection⁵

Physiology collected with triple-point sensor:

- Electrodermal activity (EDA)
- Heart Rate (HR)
- Skin Temperature (TEMP)

Analysis

1. Preprocessing (filtering and trimming)

iver	4.5		I	1	I	1	Min
careg	βμ	- many wh	"nhullum	wind	Mym	MMM	a Mar -
с) Х	2	0	5	10 Time (mi	15 n)	20	25
PWD)	ςη	-		- James	March		~~~~~
Υ (0.5	0	5	10	15	20	25

	100		1	1	1	1	1	34.5
	bpm		MMMMM	Multur	" "My	on the state of the second	w MMMmy har	° °
	30	0	5	10	15	20	25	30.5 0
	100		1	I		1	1	31.5
	ррт	- "WM	Lun Munuh	Www.man	MMMM	May My May My Mar	Manyahawanta	
	30	0	5	10	15	20	25	27.5 0
P	rep	roce	essed	data f	from	one d	yad	

2. Non-linear measures of synchrony using optimal parameters: a. Normalized Symbolic Transfer Entropy (NSTE)

• Measures information transfer from one signal to the other (directional)

b. Single Session Index (SSI)

• Based on the ratio of positive to negative correlations of the slopes between two signals (non-directional).

*For further details on data analysis, contact E.F.

Interpersonal Physiological Coordination in Persons with Dementia During a Dance-**Based Movement Program** Erica Flaten^a, Dannie Fu^b, Stefanie Blain-Moraes^{b,c}

^aMcMaster University, ^bMcGill University, ^cMontréal Neurological Institute Email: flatene@mcmaster.ca; twitter: @FlatenErica

Different measures of synchrony (NSTE & SSI) may differentially pick up on moments of connection

- Valence of SSI may reflect how PWD and caregivers modulate arousal together during the different activities. High, unidirectional NSTE may reflect leader/follower roles during the movement program.
- It may matter which physiological mode is used for 2. measuring coordination.
 - predominantly temperature coordination
- https://doi.org/10.1177/1088868316628405

BIAPT

Preliminary results

Case 1: P4P10

For higher resolution figures of all the dyads of interest, go to this <u>link</u>.

Conclusions

Case 1 showed predominantly EDA coordination, while case 2 showed

Limitations:

- shared activity and perceptual input.
- Low sample size.
- No p values for the NSTE yet.

Future Directions:

- shared input.
- for each participant.
 - Cross-modal applications of NSTE and SSI

References

[1] Feldman, R. (2007). Parent–infant synchrony and the construction of shared timing; physiological precursors, developmental outcomes, and risk conditions. Journal of Child Psychology and Psychiatry, 48(3), 329–354. https://doi.org/10.1111/j.1469-7610.2006.01701.» [2] Palumbo, R. V., Marraccini, M. E., Weyandt, L. L., Wilder-Smith, O., McGee, H. A., Liu, S., & Goodwin, M. S. (2017). Interpersonal Autonomic Physiology: A Systematic Review of the Literature. Personality and Social Psychology Review, 21(2), 99–141.

[3] Behrens, F., Snijdewint, J. A., Moulder, R. G., Prochazkova, E., Sjak-Shie, E. E., Boker, S. M., & Kret, M. E. (2020). Physiological synchrony is associated with cooperative success in real-life interactions. Scientific Reports, 10(1), 1–9. https://doi.org/10.1038/s41598-020-76539-8 [4] Ablitt, A., Jones, G. V., & Muers, J. (2009). Living with dementia: A systematic review of the influence of relationship factors. Aging and Mental Health, 13(4), 497–511. https://doi.org/10.1080/13607860902774436 [5] Motta-Ochoa, R., Incio-Serra, N., Boulet, A., Fu, D., Frantz, A., William, M., & Blain-Moraes, S. (2021). Mouvement de passage: Creating connections through movement among persons with dementia. Dementia, 1–24. https://doi.org/10.1177/14713012211004009

Main findings:

Case 1

- Negative SSI during activities 3 and 4, predominantly in EDA.
- Increase in $X \rightarrow Y$ NSTE, and positive SSI in EDA during a noncoded moment where P4 & P10 took turns standing on one foot and supporting each other.

Case 2

• Increase in $X \rightarrow Y$ NSTE, and negative SSI in TEMP in the only coded moment of connection during activity 3

Overall, coded moments of connection often did not line up with physiological coordination.

• It is possible there could be physiological synchrony due to

Controlled experiment to manipulate behavioural synchrony and

• Use machine learning to determine dominant physiological mode